neptunium | Stable | Atomic mass | Mole | | | |---------|-------------|----------|--|--| | isotope | | fraction | | | | (none) | | | | | ## Half-life of radioactive isotope Less than 1 second Between 1 second and 1 hour Greater than 1 hour | ²²⁵ Np | ²²⁶ Np | 227 _{Np} | 228 _{Np} | 229 _{Np} | 230 _{Np} | 231 _{Np} | 232 _{Np} | 233 _{Np} 23 | ¹⁴ Np | |-------------------|-------------------|-------------------|-------------------|---------------------|--------------------|---------------------|---------------------|----------------------|-------------------| | 235 _N | ip 236 | Np 237 | ip 238 | lp 239 _N | p 240 _N | lp 241 _N | lp 242 _N | lp ²⁴³ Np | 244 _{Np} | ## Important applications of stable and/or radioactive isotopes Isotopes in nuclear physics - 1) 237 Neptunium is used in the production of 238 Pu, which is an alpha emitter used in thermoelectric generators and radioisotope heater units. The 237 Np captures a nucleus 237 Np+ 1 n \rightarrow 238 Np \rightarrow 238 Pu. The 238 Np nucleus undergoes beta-minus decay to 238 Pu, with a half-life of 2.117 days. - 2) ²³⁷Neptunium is fissionable and can be used in fast neutron reactors or in nuclear weapons.